skip to main content


Search for: All records

Creators/Authors contains: "Gotz, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The visual analytics community has long aimed to understand users better and assist them in their analytic endeavors. As a result, numerous conceptual models of visual analytics aim to formalize common workflows, techniques, and goals leveraged by analysts. While many of the existing approaches are rich in detail, they each are specific to a particular aspect of the visual analytic process. Furthermore, with an ever‐expanding array of novel artificial intelligence techniques and advances in visual analytic settings, existing conceptual models may not provide enough expressivity to bridge the two fields. In this work, we propose an agent‐based conceptual model for the visual analytic process by drawing parallels from the artificial intelligence literature. We present three examples from the visual analytics literature as case studies and examine them in detail using our framework. Our simple yet robust framework unifies the visual analytic pipeline to enable researchers and practitioners to reason about scenarios that are becoming increasingly prominent in the field, namely mixed‐initiative, guided, and collaborative analysis. Furthermore, it will allow us to characterize analysts, visual analytic settings, and guidance from the lenses of human agents, environments, and artificial agents, respectively.

     
    more » « less
  2. null (Ed.)
    Visual analytics systems enable highly interactive exploratory data analysis. Across a range of fields, these technologies have been successfully employed to help users learn from complex data. However, these same exploratory visualization techniques make it easy for users to discover spurious findings. This paper proposes new methods to monitor a user’s analytic focus during visual analysis of structured datasets and use it to surface relevant articles that contextualize the visualized findings. Motivated by interactive analyses of electronic health data, this paper introduces a formal model of analytic focus, a computational approach to dynamically update the focus model at the time of user interaction, and a prototype application that leverages this model to surface relevant medical publications to users during visual analysis of a large corpus of medical records. Evaluation results with 24 users show that the modeling approach has high levels of accuracy and is able to surface highly relevant medical abstracts. 
    more » « less
  3. null (Ed.)